The Economics of Climate Change Lecture 8: Regulation via Prices vs. Quantities

Dr. Markus Ohndorf

ETH Zürich

Autumn Term 2014

Dr. Markus Ohndorf (ETH Zürich)

The Economics of Climate Change

Autumn Term 2014 1 / 26

- number of policy instruments that can be used for climate change (taxes, permits, direct regulation, and so on)
- In general economic instruments tend to be preferred due to incentives it induce in polluters
- However, it is important to consider the comparisons between the two main types of instruments Prices (taxes, subsidies) and quantities (tradable permit markets)

This lecture:

- In what circumstances will a regulator prefer prices over quantities and vice versa?
- What influences this choice?

• One regulator decides on whether to use a price or quantity policy to regulate greenhouse gas emissions

In economy there is a:

- Marginal cost function (MC): the additional cost of reducing emissions (abatement) by one unit
- Marginal Social benefit function (MB): the additional benefit of reducing emissions (abatement) by one unit
- We look at the uncertainty of the functions (the regulator is uncertainty about the curves)

Under complete certainty

 Under complete certainty both instruments are equivalent, i.e. choosing a p* will give q* and vice versa:

• Assume, the regulator does not know the true position of the (marginal) benefits function

Findings:

- In general, error in estimation results in social loss
- Inis social loss will be the same for both Pigouvian taxes and permits

MB is greater than originally thought

6 / 26

æ

< □ > < □ > < □ > < □ > < □ >

Autumn Term 2014 8

æ

メロト メポト メヨト メヨト

Autumn Term 2014 9

æ

メロト メポト メヨト メヨト

- Regulator knows, with complete certainty, the MC function
- In competitive market the following holds: $p^* = MC(q^*)$
- So given q^* can determine p^* and vice versa

- Assume that due to a random shock (uncertainty) the regulator has an anticipated marginal cost function instead of the real marginal cost function
- Under this a regulator can choose Q but be surprised by the associated cost of it
- Regulator can choose P and be confident of the marginal costs no matter how uncertain the cost function is

many interesting things:

- Steepness of MB curve with uncertain MC
- Steepness of MC with uncertain MC
- **③** Relative steepness of both MB and MC with uncertain MC

Ξ.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Horizontal MB function

Price (tax) reaches socially optimal level Quantities has distortion $(q^* - q_q)$

Dr. Markus Ohndorf (ETH Zürich)

The Economics of Climate Change

Autumn Term 2014

13 / 26

Vertical MB function

Price causes distortion $(q^* - q_q)$ Quantity instruments optimal

Changes in the slope of MDs

Dr. Markus Ohndorf (ETH Zürich)

The Economics of Climate Change

Autumn Term 2014

15 / 26

Flatter marginal benefit function \implies favours price instruments

Steeper marginal benefit function \implies favours quantity instruments

Changes in the slope of MACs

Dr. Markus Ohndorf (ETH Zürich)

The slope of the marginal cost function matters in determining the preferred policy instrument:

Steeper marginal cost function \implies favours price instruments Flatter marginal cost function \implies favours quantity instruments

A price instrument is more (less) efficient than a quantity mechanism when marginal benefits are relatively flat (steep) compared to the marginal costs

Weitzman (1972) Main result

Assume quadratic cost functions:

$$B(q,\eta) = (I+\eta)q + \frac{b}{2}q^2$$
$$C(q,\theta) = (\theta)q + \frac{c}{2}q^2$$

Price instruments are relative more efficient than quantity instruments when:

$$\Delta = \frac{\sigma^2}{2c} \left(c - b \right)$$

where σ^2 is variance of cost shock, c slope of MC and b is slope of MB Important points:

- When c > b prices preferred
- 2 When c < b quantity preferred
- 3 When c = b, effectively the same
- Variance of cost shock alter magnitude of relative efficiency.

Dr. Markus Ohndorf (ETH Zürich)

Note: Regulated actors are sovereign countries not firms or other private entities

- Noncompliance under price-based regulation
 - Fiscal Sovereignty always lies with the state
 - Fiscal Cushioning:

Individual countries can use fiscal revenues to reduce fees which indirectly tax carbon (e.g. fuel duty) or increase subsidies for carbon/energy intense production processes (e.g. coal subsidies) \rightarrow effective tax rate is reduced

 \rightarrow individual countries can undermine the incentive effect of a global price-based regulation

- Noncompliance under a quantity-based regulation
 - Countries misrepresent their emission budget
 - Individual countries cannot influence the scarcity of certificates
 - \rightarrow Enforcement of quantity-based instruments on the international level is stricter than that of price-based instruments, $\alpha_t < \alpha_q$.
- Next we present the expected difference in social welfare of Prices over Quantities when;
 - marginal costs and benefits are uncertain
 - enforcement of Quantities is stricter than that of Prices

Prices vs. Quantities under Fiscal Cushioning

Expected difference in social welfare of Prices over Quantities Δ_{pq} :

$$\Delta_{pq} = \underbrace{\frac{\sigma^2 \alpha_q (1 - (2 - \alpha_q)\beta)}{2C''}}_{Uncertainty \ Effect} + \underbrace{\frac{\alpha_q (1 - k)}{2C''} \left[\frac{F^2}{(1 - \alpha_q)(1 - k\alpha_q)} - \frac{(F + \underline{b})^2}{(1 + \alpha_q \beta)(1 + k\alpha_q \beta)} \right]}_{Differentiated \ Enforceability \ Effect}$$

- α_q : enforcement probability of quantity-based regulations
- $\alpha_t = k \alpha_q$; $k \in]0,1[$ measure for the difference in enforceability
- F: sanction for noncompliance
- <u>b</u>: level of the marginal benefit curve
- Assumption for incomplete enforcement: $F < \frac{1-\alpha_q}{\alpha_q} p = \frac{(1-\alpha_q)b}{\alpha_q(1+\beta)}$
- p: permit price

Strict dominance of Quantity-based Instruments

Quantity-based regulation ought to be always preferred if

$$\sigma^2 < \overline{\sigma}^2$$

where

$$\overline{\sigma}^2 = (1-k) \left(\frac{(F+\underline{b})^2 (2-\alpha_q)^2}{2(2-\alpha_q(1-k))} - \frac{F^2}{(1-\alpha_q)(1-k\alpha_q)} \right)$$

- α_q : enforcement probability of quantity-based regulation
- k: measure for the difference in enforceability
- F: sanction for noncompliance
- <u>b</u>: level of the marginal benefit curve

- Institutional variables and the level of the marginal benefit curve which were irrelevant in Weitzman's (1974) approach, now determine instrument choice
- Relative Slope Criterion is no longer valid!
- The threshold level $\overline{\sigma}^2$
 - increases with the level of the marginal benefit curve
 - decreases when prices are stricter enforceable
- Quantity-based instruments ought to be always preferred if $\sigma^2 < \overline{\sigma}^2$

Numerical Simulations in the Context of Climate Change

- Conventional perspective: Newell and Pizer (2003) suggest the use of price instruments (e.g. carbon tax) to regulate GHG emission
- The results of our numerical calculations give insights into the impact of both effects
- Application of our model to the case of regulating CO₂ emissions, based on data presented in Newell and Pizer (2003)

Parameter	Value
Slope of marginal costs (C'')	$1.6 * 10^{-7} $ / t^2
Slope of marginal benefits (B'')	$-8.7 * 10^{-13} $
Cost uncertainty (σ)	13\$/ <i>t</i>
b	9\$/t
Sanction (F)	0.98\$/t
Enforcement probability of Quantities (α_q)	0.8

Table: Parameter values

Numerical Simulations

- More recent studies estimate much higher <u>b</u>-values
- Quantities ought to be strictly preferred if $\underline{b} = 30$ \$/t is assumed
 - \rightarrow variance of costs $\sigma^2 < \overline{\sigma}^2$

• The estimated slopes of the marginal curves yield $\beta \approx 5.4 * 10^{-6} \rightarrow$ differentiated enforceability effect is too weak in order to render quantity instruments preferable

