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Previous lecture:  

 Economic Efficiency and social optimality 

 Efficiency and markets 

 Pollution and market failure: public goods and 
externality 

 Consequence: Inefficiencies from «over-pollution» 

In this lecture:  

  We show the principles of deriving optimal 
emission levels in the context of climate change. 
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Scenarios and temperature increase 
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IPCC - Projections (scenario-based) 
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Emissions in Scenarios 

 Kaya Identity (Kaya 1990): 

 

 

 

 This identity is quite helpful when thinking about future 

emissions and points of intervention 

 But: What about the stringency of climate policies (e.g. 

emission taxes) over time? 
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How much emitted GHGs should be 
allowed 
 From lecture 1 we saw that a target of 550ppm has been 

chosen to control GHG, is this optimal? is this efficient? 

 answer: it depends on your objectives! 

From economist's point of view: 

 Focus on optimality: Aim is to maximize welfare: efficient 
allocation of resources in economy 

 Problem: policymakers do not know all relevant 
information. 

 Solution: focus on efficient outcome by trying to 
maximize discounted net benefits over a time horizon 
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Damage from pollution 

 GHG is a stock pollutant: damages to the 
economy depend on the stock of the pollutant 
(as opposed to the flow of the pollutant) Stock is 
the flow of the pollutant minus the decay of the 
pollutant in the atmosphere 
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Damages over time 
 From lecture 2, the damage function shows the 

externality produced by GHGs, i.e. uncompensated costs 
borne by society due to the level of GHG...it is a public 
bad. 

 The damage function encapsulates all damages to the 
world and produces a monetary value. Realistic? 

Damage to society is given by the function: 
 
 
where t is the time subscript and At is the stock of GHG at 
time t 
 Usually assumed that D’(⋅)>0 and D’’(⋅)>0 
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Pollution dynamics (continuous time) 
 As we are discussing GHG, the rate at which the stock 

(At ) changes depends on: 
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Benefit of pollution 
 Assume that firms produced good with no pollution ⇒ prohibitively 

expensive 
 Now consider this constraint is relaxed, the cost of pollution 

abatement falls (and hence profits rise) 
 So benefit of pollution is the profit obtained in being allowed to emit 

pollution. 
 The net benefit function of GHGs is denoted by: 
 Bt = Bt (Mt) 
 where t is the time subscript and Mt is the flow of current GHGs with 

Bt >0 and Bt < 0, as the per unit abatement costs will larger the 
greater the amount of pollution reduction. 
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Consumption discount rate 
 (consumption) discount rate r show the preferences for consumption 

in future periods 

 intertemporal welfare: 

 

 this shows weighting of consumption Ut for each period t 

 

  so for r > 0 the future "counts less" for same quantity today 

  In continuous time this is most often presented as: 
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The intertemporal optimization problem 

 The objective of the policy (law) maker is to select a target level of 
Greenhouse gases in each period to maximise the discounted net benefits 
over some time horizon T: 
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where r is the social discount rate in the economy, which is usually assumed to 
be constant. 
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 To solve this we create a current-valued Hamiltonian:  
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 Simplifying Assumption:  

i.e. the future gains/losses from a marginal change in 

emissions are constant (constant shadow price).     
 This yields:  

t

t

t

t

t t

t t

t t

t t

B 0
M
D r 0
A

D DSubstituting  and taking into account that  yields:
A M

B D1 ,
M r M

∂
+µ =

∂
∂

+αµ + µ =
∂

∂ ∂
µ =

∂ ∂
∂ ∂

= ⋅
∂ + α ∂

 Which determines the optimal level of emissions Mt* 



01.10.2014 Institute for Environmental Decisions/ ohndorfm@ethz.ch 

 In other words, greenhouse gas emissions should be set 

at the level where the present value of net marginal 

benefits equals the present value of damage from the 

marginal unit of  pollution (while taking decay into 

account) 

 In other words, this also corresponds to MAC = MD! 

 Note the decay rate alters the level of optimal emissions 

⇒ different level of optimal emissions for all greenhouse 

gases 
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Optimal level when damages can be 
anticipated (Welfare maximization) 
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pollution V

marginal cost of prevention
(GKv)

marginal damage (GS)

v1 v0

marginal damage (GS)marginal cost
of prevention (GKv)

GKv = GS

 Optimal Emission level V1 is 

to be incentivized. 

 This is achieved by putting a 

«price on carbon» 

 Optimal carbon price p:  

p = Marginal Damages = Marginal Abatement costs 
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Damages and Uncertainty 
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Source: Downing and Watkiss, 2003 
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The problem of specifying the damage curve 
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Minimizing Abatement costs under an 
environmental constraint 
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Marginal Abatement Cost 
MAC(e) 

Emissions e e* 

$ 

Shadow  
Price 

Environmental constraints: 

 Temperature not exceeding 2°C 

 Concentration not exceeding 

550 ppmv 

 Constraints are usually 

probabilistic, e.g. target is met 

with x% probability 
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 IAMs are combined climate and economic models which 
allow a joint modelling of natural and socio-economic 
processes 

 Primary analytical tool for quantitative climate policy 
analysis 

 Used to predict the impacts of GHG emissions and to 
evaluate the optimal abatement path (when, where and 
how much to abate) 

 First climate-economy IAM developed by Nordhaus (1991) 

Integrated Assessment Models 
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Simplified structure of IAMs 

21 
 

Source: Arigoni Ortiz and Markandya (2009) 
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 Consistent modelling of economy, climate and 

biosphere 

 Consideration of feedbacks between the different 

domains 

 Often global coverage, sometimes regionally 

disaggregated 

 Long time scales 

Strenghts of IAMs 
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 Trade-off between level of accuracy within the sub-

models and width of coverage 

 High complexity, sometimes low transparency  with 

respect to assumptions made  «black box» 

 Requirement of high computer power to solve models 

 Adequate uncertainty analysis often difficult 

Weaknesses of IAMs 
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Estimates for the social cost of carbon (SCC) diverge:  

$93/tC (mean), $14/tC (median), $350/tC (95 percentile)(Tol, 2005) 

Differences in IAM results 
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Source: Tol (2005) 
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1) Choice of model structure 

2) Treatment of abatement costs and assumptions on 

technological change 

3) Way of handling uncertainty in climate outcomes (9.10.) 

4) Way of handling equity across time and space (9.10.) 

Main drivers of differences in IAM results 
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a) Welfare maximization models 

b) General equilibrium models 

c) Partial equilibrium models 

d) Simulation models 

e) Cost minimization models 

1) Typical model structures of IAMs 
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 The economy is represented in a growth model 

 The discounted present value of welfare is maximized 

across all time periods  Optimization over the amount 

of abatement in each period 

 All time periods are solved simultaneously (perfect 

foresight) 

a) Welfare maximization models 
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Structure of welfare maximization model 
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Source: Stanton et al., 2008 



01.10.2014 Institute for Environmental Decisions/ ohndorfm@ethz.ch 

 Economy is represented in a set of linked economic sub-

models (different sectors) 

 Models are solved by finding a set of prices for which all 

markets are cleared 

 «Recursive dynamics»: prices are set for each time 

period; results are used as inputs for next time period (no 

perfect foresight assumed) 

 GE models are often very complex 

b) General equilibrium models 
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Simplified structure of GEM 
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 PE models correspond to reduced GE models, i.e. they 

use only a subset of the economic sectors 

 Prices of economic sectors not represented in the model 

are taken as exogenously given (fixed) 

c) Partial equilibrium models 
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 Based on predictions about future emissions and climate 

conditions 

 No feedback between climate and economic models, i.e. 

climate and emission parameters are exogenous to the 

model (Scenarios) 

 Estimation of the potential costs of different future 

emission paths 

d) Simulation models 
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 In most cases, no feedback between climate and 

economic models  only emissions are represented 

 Very detailed modelling of energy sector and different 

industries 

 Identify the most cost effective solution to achieve a 

certain stabilization target 

 

e) Cost minimization models 

33 
 



01.10.2014 Institute for Environmental Decisions/ ohndorfm@ethz.ch 

Overview of some recent IAMs 
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Source: Stanton et al., 2008 
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 Characterization of technologies by decreasing or 
increasing returns to scale? 

 Level of detail in technology sub-models: How many 
regions, industries, fuels, abatement technologies and 
end uses are included? 

 Does the model include macroeconomic feedback from 
investment in abatement technology? 

 Is technological change exogenous or endogenous? 

2) Treatment of abatement costs and 
assumptions on technological change 
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 Many IAMs characterize technologies with decreasing 
returns to scale 

 Decreasing returns to scale are usually used for 
convenience (to avoid path dependence and multiple 
equilibria) 

 Increasing returns to scale is more realistic, esp. when 
representing knowledge-based technologies 

 

Decreasing vs. increasing returns to 
scale 
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 In many IAMs, abatement costs are considered as loss 
of income 

 More realistic approach:  

 Account for job and income generating effects of 
abatement 

 Consider abatement costs as additions to capital 
rather than subtractions from income 

Accounting for macroeconomic feedback 
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 In many IAMs, technological change is exogenous  
technological learning curves are taken as given 

 More realistic approach: make technological change 
dependent on investment and R&D efforts  model 
technological change as an outcome of economic activity 

 In tendency, models including endogenous technological 
change provide lower estimates of abatement costs 
(Edenhofer et al., 2006; Barker et al., 2006)  

Endogeneity of technological change 
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Conclusion 

 Even without taking more uncertain effects into account, 
theoretically optimal carbon prices seem to suggest that 
quite stringent climate policy should be implemented. 

 When also considering non-linear effects and the fact 
that such policies also trigger innovation, the need for 
global climate policy seems to be more and more 
undisputable. 
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